Kamis, 17 November 2011

7.1. Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print statement. (A third way is using the write() method of file objects; the standard output file can be referenced as sys.stdout. See the Library Reference for more information on this.)
Often you’ll want more control over the formatting of your output than simply printing space-separated values. There are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and concatenation operations you can create any layout you can imagine. The string types have some methods that perform useful operations for padding strings to a given column width; these will be discussed shortly. The second way is to use the str.format() method.
The string module contains a Template class which offers yet another way to substitute values into strings.
One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value to a string: pass it to the repr() or str() functions.
The str() function is meant to return representations of values which are fairly human-readable, while repr() is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there is not equivalent syntax). For objects which don’t have a particular representation for human consumption, str() will return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries, have the same representation using either function. Strings and floating point numbers, in particular, have two distinct representations.
Some examples:
>>>
>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1.0/7.0)
'0.142857142857'
>>> repr(1.0/7.0)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"
Here are two ways to write a table of squares and cubes:
>>>
>>> for x in range(1, 11):
...     print repr(x).rjust(2), repr(x*x).rjust(3),
...     # Note trailing comma on previous line
...     print repr(x*x*x).rjust(4)
...
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000

>>> for x in range(1,11):
...     print '{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x)
...
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000
(Note that in the first example, one space between each column was added by the way print works: it always adds spaces between its arguments.)
This example demonstrates the str.rjust() method of string objects, which right-justifies a string in a field of a given width by padding it with spaces on the left. There are similar methods str.ljust() and str.center(). These methods do not write anything, they just return a new string. If the input string is too long, they don’t truncate it, but return it unchanged; this will mess up your column lay-out but that’s usually better than the alternative, which would be lying about a value. (If you really want truncation you can always add a slice operation, as in x.ljust(n)[:n].)
There is another method, str.zfill(), which pads a numeric string on the left with zeros. It understands about plus and minus signs:
>>>
>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'
Basic usage of the str.format() method looks like this:
>>>
>>> print 'We are the {} who say "{}!"'.format('knights', 'Ni')
We are the knights who say "Ni!"
The brackets and characters within them (called format fields) are replaced with the objects passed into the str.format() method. A number in the brackets refers to the position of the object passed into the str.format() method.
>>>
>>> print '{0} and {1}'.format('spam', 'eggs')
spam and eggs
>>> print '{1} and {0}'.format('spam', 'eggs')
eggs and spam
If keyword arguments are used in the str.format() method, their values are referred to by using the name of the argument.
>>>
>>> print 'This {food} is {adjective}.'.format(
...       food='spam', adjective='absolutely horrible')
This spam is absolutely horrible.
Positional and keyword arguments can be arbitrarily combined:
>>>
>>> print 'The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',
...                                                    other='Georg')
The story of Bill, Manfred, and Georg.
'!s' (apply str()) and '!r' (apply repr()) can be used to convert the value before it is formatted.
>>>
>>> import math
>>> print 'The value of PI is approximately {}.'.format(math.pi)
The value of PI is approximately 3.14159265359.
>>> print 'The value of PI is approximately {!r}.'.format(math.pi)
The value of PI is approximately 3.141592653589793.
An optional ':' and format specifier can follow the field name. This allows greater control over how the value is formatted. The following example rounds Pi to three places after the decimal.
>>>
>>> import math
>>> print 'The value of PI is approximately {0:.3f}.'.format(math.pi)
The value of PI is approximately 3.142.
Passing an integer after the ':' will cause that field to be a minimum number of characters wide. This is useful for making tables pretty.
>>>
>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
...     print '{0:10} ==> {1:10d}'.format(name, phone)
...
Jack       ==>       4098
Dcab       ==>       7678
Sjoerd     ==>       4127
If you have a really long format string that you don’t want to split up, it would be nice if you could reference the variables to be formatted by name instead of by position. This can be done by simply passing the dict and using square brackets '[]' to access the keys
>>>
>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '
...        'Dcab: {0[Dcab]:d}'.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678
This could also be done by passing the table as keyword arguments with the ‘**’ notation.
>>>
>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format(**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

Tidak ada komentar:

Posting Komentar